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Tree-Based Approaches for Interpretable Modeling in Healthcare
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CONTEXT

Survival framework in oncology

» Cancer relapse, tumour progression or death are often used to ( nURIEeEE AUEEITEEL
Interpretability in Al- for survival
measure treatment effect based MD endpoints

» Survival analysis aims to model the time to the event of interest
 Random survival forest are widely used
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How can tree-based approaches benefit interpretability In
survival framework?
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RecForest Algorithm for multiple clinical events
« Patients may face recurrent disease relapses, frequent hospitalizations, or repeated surgeries
* We introduced tree-based RecForest for recurrent event to closely mirror patient follow-up processes

forests for the analysis of recurrent events for right-censored data, with or without a terminal
event. A preprint

e Facillitates more precise clinical predictions [‘}E Murris, J., Bouaziz, O., Jakubczak, M., Katsahian, S., & Lavenu, A. (2024). Random survival

NEXT STEPS
TreeSHAP SurvSHAP
« Extended algorithm to compute SHAP for tree-based models « Extends SHAP for any functional output of survival models
* Reduces computational cost of explanations * Generates explanations across all time points

« SHAP contribution for feature i computed using path-dependent feature
perturbation algorithm
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Combining TreeSHAP and SurvSHAP for tree-based survival models broadens interpretability possibilities
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