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CONTEXT & OBJECTIVES

* Modern technologies enable data to be generated on thousands of

RESULTS

| Simulation scheme
variables or observations, as per genomics, medico-administrative  Homogenous Poisson process used with the times between two successive

databases, disease monitoring by intelligent medical devices events following exponential distribution with following intensity function

» Study individuals may face repeated events over time, such as A(tlz) =1y *x1 (2, B)
hospitalizations or cancer relapses (Figure 1) » Several scenarios explored with n = 500 stochastic processes, p = 10

- In either clinical trials or real-world set, survival analysis usually focuses on binary predictors

modeling the time to the first occurrence of the event 1. B =05,05.10=0
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Figure 1. Recurrent Event Framework
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- replicates and in each instance 100 trees were grown (Figure 2)
Study objectives

Figure 2. Performance based on OOB prediction error

* To present an extension of the random forest algorithm for the analysis of
survival data with recurrent events, utilizing concepts from non-
parametric survival analysis and statistical learning

METHODS | -

Non-parametric basics

Let N;(t) the cumulative number of events for the individual i = 1,...,n over the
interval [0, t],t € [0, T] with T the longest follow-up time overall

 The mean cumulative function (MCF) writes
u(t) = E[N;(¢)] 0.2
« The Nelson-Aalen MCF estimator writes |

1(t) —zn:fthi(u)
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with §(t) = Xi 6;(t) and §;(t) indicates whether the individual is at risk.

OO0B prediction error

Feature importance

Pseudo-score test from Cook, Lawless & Nadeau can be used to compare two ~ * Assessed based on permutations and whenever prediction error < 0.50
MCFs. H, is no difference across MCFs. For two sub-samples A and B, the test * The feature importance for a predictor is the prediction error for the original

statistic writes
‘ 04 (u) Op (u)

0 64(u) +65 (u)

U(t) = (diia(u) —dip (u))

Growing survival decision tree extended to recurrent events
The splitting rule
At each node, m € N predictors are randomly selected

* A greedy algorithm for optimal threshold research to maximize the pseudo-
score test statistic

Estimates for terminal nodes

 The MCF estimator for an individual i with x; the vector of predictors writes
At|x;) = fAp(t) X Iy ep

* [ the MCF estimator constructed at the terminal node h

Pruning
* Trees grow up until each terminal node contains at least ¢ € N individuals

Aggregating

The ensemble estimators for an individual i is the average of the estimate over
all ... trees and is defined as

. 1 Mtree
H(t[x;) = — z fr (E]x;)
ree

=1
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ensemble substracted from the prediction error for the new ensemble
obtained after permutation

» Large importance values indicate variables with predictive ability, whereas
Zero or negative values identify nonpredictive variables to be filtered
(Figure 3)

Figure 3. Feature importance for scenario 3 with best performance
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DISCUSSION & CONCLUSION

* QOur approach is simple and easily accessible
* And constitutes a solid baseline for many extensions

For this reason, the approach we propose Is a valuable contribution for
analysing recurrent events in medical research.

Perspectives

* More scenarios could be explored and include variations of number of
subjects and multicollinearity in predictors

» Other evaluation metrics could be used e.g., mean sguare error, mean
absolute error, log-likelihood, feature importance

The proposed methodology has the potential to facilitate the analysis of

recurrent events in biological systems, providing key insights into the
underlying mechanisms of survival outcomes.




