

Predicting Recurrent Events in a Survival Framework

Development of a Machine Learning Approach and an Application in Oncology

Juliette Murris International Day of Women in Statistics and Data Science 2024

01 Motivating clinical data

Digestive Cancer in France

Digestive Cancer in France

Key Facts

- Among the most frequent cancers, affecting over 70,000 patients annually
- The second leading cause of cancer-related deaths in France
- Surgery is the primary treatment strategy

Digestive Cancer in France

Key Facts

- Among the most frequent cancers, affecting over 70,000 patients annually
- The second leading cause of cancer-related deaths in France
- Surgery is the primary treatment strategy

Public Health Concerns

- What are the outcomes after the initial cancer surgery?
- What is the risk of complications or mortality post-surgery?
- Which factors contribute to readmissions?

What our data are made of

Patients with no readmissions over time

Patients with one or more readmissions over time

Patients who died during follow-up

How to analyze multiple hospital readmissions over time for each patient?

► Focus on the presence of at least one readmission?

► Focus on the number of readmissions at 6 months?

► Focus on time to first hospital readmission?

- ▶ Focus on the presence of at least one readmission?
- Classification problem, Solution: logistic regressions, No consideration of multiple events
- ► Focus on the number of readmissions at 6 months?

► Focus on time to first hospital readmission?

- ▶ Focus on the presence of at least one readmission?
- Classification problem, Solution: logistic regressions, No consideration of multiple events
- ► Focus on the number of readmissions at 6 months?
- Regression problem, Solution: linear regressions, No consideration of time
- ► Focus on time to first hospital readmission?

▶ Focus on the presence of at least one readmission?

- Classification problem, Solution: logistic regressions, No consideration of multiple events
- ► Focus on the number of readmissions at 6 months?
- Regression problem, Solution: linear regressions, No consideration of time
- ► Focus on time to first hospital readmission?
- Survival problem, Solution: Survival analysis, No consideration of subsequent events

▶ Focus on the presence of at least one readmission?

- Classification problem, Solution: logistic regressions, No consideration of multiple events
- ► Focus on the number of readmissions at 6 months?
- Regression problem, Solution: linear regressions, No consideration of time
- ► Focus on time to first hospital readmission?
- Survival problem, Solution: Survival analysis, No consideration of subsequent events

► Focus on time to recurrent readmission

• Survival problem, Solution: Survival analysis for recurrent events

Definition

Stochastic processes that generate events of the same type repeatedly over time.

Definition

Stochastic processes that generate events of the same type repeatedly over time.

Censoring

When the exact time of an event is not fully observed for some subjects within the study period

State-of-the-art – Non-parametric approach

The Mean Cumulative Function is the marginal expected number of events in [0, t]:

 $\mu(t) = \mathbb{E}[N(t)]$

The Mean Cumulative Function is the marginal expected number of events in [0, t]:

 $\mu(t) = \mathbb{E}[N(t)]$

Nelson-Aalen Estimator:

 $\hat{\mu}(t) = \sum_{\{h|t_{(h)} \le t\}} \frac{dN(t_{(h)})}{Y(t_{(h)})}$ $\hat{\mu}(t) = \sum_{\{h|t_{(h)} \le t\}} \frac{dN(t_{(h)})}{Y(t_{(h)})}$ M distinct event times across all n patients $Y(t) = \sum_{i=1}^{n} Y_i(t)$ $Y(t) = \sum_{i=1}^{n} Y_i(t)$ $Y(t) = \sum_{i=1}^{n} Y_i(t)$ $Y(t) = \sum_{i=1}^{n} Y_i(t)$

Cook & Lawless (1997)

State-of-the-art – Modeling strategies

Conditional models

Andersen & Gill (1982), Prentice, Williams & Peterson (1981)

- Focus: intensity instantaneous probability of observing any event in a small time period [t; t+)
- ► Time scale: counting process

 Dependence structure between recurrent events by full specification of the recurrent event process

Marginal models

Wei, Lin & Weissfeld (1989), Lee, Wei & Amato (1992)

- **Focus: Marginal features** marginal distribution of times to the first, second, third, ... event
- ► Time scale: total time

 Dependence structure between successive events may remain unspecified

Non-informative censoring ?

Non-informative censoring ?

Non-informative censoring ?

= with a **terminal** event

State-of-the-art – With a Terminal Event

MCF Non-parametric Estimator:

imator:

$$\hat{\mu}(t) = \int_0^t \hat{S}(u-) \underbrace{\sum_i Y_i(u) dN_i(u)}_{\sum_i Y_i(u)}$$
increment
at time u

Kaplan-Meier estimator of survival just before *u*

Modeling:

$$\mu(t|Z) = \begin{cases} \mu_0(t) \cdot \exp(\beta^T Z) & \text{if } Z \text{ is time-independent} \\ \int_0^t \exp(\beta^T Z(s)) \, d\mu_0(s) & \text{if } Z \text{ is time-dependent} \end{cases}$$

🖅 Ghosh & Lin (2000, 2002)

Raising questions – from the statistician's perspective

Key challenges

- ► How to manage situations with high-dimensional data?
- ► How to select independent variables when dealing with recurrent events?
- ► How to avoid overfitting and ensure reliable generalization to new data?

Raising questions – from the statistician's perspective

Key challenges

- ► How to manage situations with high-dimensional data?
- ► How to select independent variables when dealing with recurrent events?
- ► How to avoid overfitting and ensure reliable generalization to new data?

Current insights

Machine learning (ML) and survival counterparts **However**, no ML algorithm *specifically designed* for recurrent events in a survival framework

02 Combining statistical inference and ensemble machine learning

Breiman (1996)

10-08-2024 J. Murris

Splitting Rule: Identifies the optimal way to partition data at each node.

Breiman (1996)

- **Splitting Rule:** Identifies the optimal way to partition data at each node.
- Terminal Node Estimator: Selects the most suitable estimator to summarize final nodes.

*B*reiman (1996)

- **Splitting Rule:** Identifies the optimal way to partition data at each node.
- Terminal Node Estimator: Selects the most suitable estimator to summarize final nodes.
- Pruning Strategy: Applies techniques to refine and simplify the tree structure.

Breiman (1996)

Growing Survival Trees

Ishwaran (2008)

Splitting Rule: Maximize

Growing Survival Trees with Recurrent Events

	Without a Terminal Event	With a Terminal Event
Splitting Rule	Maximize the Test Statistic	
At each node, $m \in \mathbb{N}$ predictors	Pseudo-score	Wald test
are randomly selected	test	from Ghosh-Lin model
Terminal Node Estimator	MCF Estimator $\hat{\mu}_b(t \mathbf{x})$	
For tree b	$\int_0^t \frac{dN_b(u)}{Y_b(u)}$	$\int_0^t \hat{S}_b(u) \frac{\sum_i Y_{b,i}(u) dN_{b,i}(u)}{\sum_i Y_{b,i}(u)}$
Pruning Strategy	A Minimal Number of Events and/or Individuals	
<i>🗐</i> Murris (2024)		

Aggregating to build random forests

Aggregating to build random forests

Aggregating to build random forests In-bag sample **Out-of-bag sample Independent Bootstrap Samples** $\hat{\mu}_1(t)$ $\hat{\mu}_2(t)$ $\hat{\mu}_B(t)$ $\widehat{\mathsf{M}}(t|\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} \widehat{\mu}_{b}(t|\mathbf{x})$

Performance evaluation – (a) The concordance index

- ► C-index widely used as a performance metric Harrell (1982)
- Extension needed to take into account subsequent event occurrences Kim (2018)

Performance evaluation – (a) The concordance index

- ► C-index widely used as a performance metric Harrell (1982)
- Extension needed to take into account subsequent event occurrences Kim (2018)

New C-index based on event occurrence rate <a>[] Murris (2024)

$$\hat{\mathbb{C}}_{\text{rec}} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{1}_{r_i > r_j} \times \mathbb{1}_{\hat{r}_i > \hat{r}_j}}{\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{1}_{r_i > r_j}}$$

with $r_i = \frac{N_i(T_i)}{T_i}$ and $\hat{r}_i = \frac{\hat{\mu}(T_i | \mathbf{x}_i)}{T_i}$ the observed and predicted event occurrence rates, respectively.

Performance evaluation – (b) The mean square error

- ► We adapted it for an ensemble framework

Performance evaluation – (b) The mean square error

- ► We adapted it for an ensemble framework

For each tree b,

$$\widehat{MSE}_{b}(t,\hat{\mu}_{b}) = \frac{1}{n} \sum_{i=1}^{n} \left(\int_{0}^{t} \frac{dN_{i}(u)}{\hat{G}_{c}(u|\mathbf{x})} - \hat{\mu}_{b}(t|\mathbf{x}) \right)^{2}$$

Where $\hat{G}_c(u|\mathbf{x}) = 1 - \hat{G}(u - |\mathbf{x})$ is an estimator of $G_c(u|\mathbf{x}) = 1 - G(u - |\mathbf{x})$, the conditional cumulative distribution function of the censoring variable C given \mathbf{x} .

Performance evaluation – (b) The mean square error

- ► We adapted it for an ensemble framework

For each tree b,

$$\widehat{MSE}_{b}(t,\hat{\mu}_{b}) = \frac{1}{n} \sum_{i=1}^{n} \left(\int_{0}^{t} \frac{dN_{i}(u)}{\hat{G}_{c}(u|\mathbf{x})} - \hat{\mu}_{b}(t|\mathbf{x}) \right)^{2}$$

Where $\hat{G}_c(u|\mathbf{x}) = 1 - \hat{G}(u - |\mathbf{x})$ is an estimator of $G_c(u|\mathbf{x}) = 1 - G(u - |\mathbf{x})$, the conditional cumulative distribution function of the censoring variable C given \mathbf{x} .

Therefore:

$$\widehat{MSE}(t,\hat{M}) = \frac{1}{B} \sum_{b=1}^{B} \widehat{MSE}_{b}(t,\hat{\mu}_{b})$$

But 🖑

But 🖑

Two different models may lead to similar MSE values over time.

But 🖑

Two different models may lead to similar MSE values over time.

Need for a score to represent the prediction gain compared to a reference estimator $\hat{\mu}_0$ and we define for each tree *b*

$$Score_b(t, \hat{\mu}_b, \hat{\mu}_{b,0}) = \widehat{MSE}_b(t, \hat{\mu}_{b,0}) - \widehat{MSE}_b(t, \hat{\mu}_b)$$

But 🖑

Two different models may lead to similar MSE values over time.

Need for a score to represent the prediction gain compared to a reference estimator $\hat{\mu}_0$ and we define for each tree *b*

$$Score_b(t, \hat{\mu}_b, \hat{\mu}_{b,0}) = \widehat{MSE}_b(t, \hat{\mu}_{b,0}) - \widehat{MSE}_b(t, \hat{\mu}_b)$$

Therefore:

1 Murris

$$Score(t, \hat{M}) = \frac{1}{B} \sum_{b=1}^{B} Score_b(t, \hat{\mu}_b, \hat{\mu}_{b,0})$$

Importance of Variables

Input: Trained model \hat{f} , variable matrix Z, target vector y

- 1. Estimate the original model error err_{OOB} from a chosen evaluation metric
- 2. For each feature $j \in \{1, \ldots, p\}$ do:
- Generate feature matrix Z^{perm} by permuting feature j in the data Z \leftarrow
- Estimate error $\widehat{err}_{OOB}^{Z^{perm}}$ based on the predictions of the permuted data
- Calculate permutation variable importance over *B* trees as:

$$VImp(j) = rac{1}{B}\sum_{b=1}^{B}(\widehat{err}_{OOB}^{Z^{perm}} - err_{OOB})$$

Output: Importance scores for all variables

This breaks the association between j and y

Application to French Digestive Cancer Data

Table: RecForest performances

C-index \uparrow	$IMSE\downarrow$	IScore ↑
0.72	1,398.04	409.32

Importance of Variables

Demographics, ICD-10 codes, Procedures, Comorbidity indices, Surgery types

- **Most important**: $\% V_{imp} \ge 4\%$
- **•** Moderately important: $1\% \le \% V_{imp} < 4\%$
- **Least important**: $%V_{imp} < 1\%$

Murris (2025?)

03 To wrap-up

Multiple Medical Applications of RecForest

To Wrap-Up – Key Takeaways

RecForest

- **ONDER TRADE INCLUSION OF CONTRACT STREET Non-Parametric** when no terminal event
- Section 2017 High-Dimensional Data

- Robust to Multicollinearity
- Variable Importance

To Wrap-Up – Key Takeaways

RecForest

- Son-Parametric when no terminal event
- Section 2017 High-Dimensional Data

3 metrics for performance evaluation

Robust to Multicollinearity
 Variable Importance

To Wrap-Up – Key Takeaways

RecForest

- Son-Parametric when no terminal event
- Section 2017 High-Dimensional Data

3 metrics for performance evaluation

Robust to Multicollinearity
 Variable Importance

► A powerful and flexible tool for recurrent events analysis in many medical fields

► Allows for potential extensions, e.g. tree-based boosting techniques

-References I

Ali, S., Abuhmed, T., El-Sappagh, S., ... & Herrera, F. (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. *Inf. Fusion*, 99, 101805.

Bezin, J., Duong, M., Lassalle, R., Droz, C., ... & Moore, N. (2017). The national healthcare system claims databases in France, SNIIRAM and EGB: powerful tools for pharmacoepidemiology. *Pharmacoepidemiol. Drug Saf.*, 26(8), 954-962.

Breiman, L. (1996). Bagging predictors. Mach. Learn., 24, 123-140.

Bouaziz, O. (2024). Assessing model prediction performance for the expected cumulative number of recurrent events. *Lifetime Data Anal.*, 30(1), 262-289.

Cadarette, S. M., & Wong, L. (2015). An introduction to health care administrative data. *Can. J. Hosp. Pharm.*, 68(3), 232.

Cook, R. J., & Lawless, J. F. (1997). Marginal analysis of recurrent events and a terminating event. *Stat. Med.*, 16(8), 911-924.

Farah, L., Murris, J. M., Borget, I., Guilloux, A., Martelli, N. M., & Katsahian, S. I. (2023). Assessment of performance, interpretability, and explainability in artificial intelligence–based health technologies: what healthcare stakeholders need to know. *Mayo Clin. Proc. Digit. Health*, 1(2), 120-138.

GUIDELINE, I. H. Estimands and Sensitivity Analysis in Clinical Trials.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. *ACM Comput. Surv.*, 51(5), 1-42.

References II

Gunter, T. D., & Terry, N. P. (2005). The emergence of national electronic health record architectures in the United States and Australia: models, costs, and questions. *J. Med. Internet Res.*, 7(1), e383.

Hariton, E., & Locascio, J. J. (2018). Randomised controlled trials—the gold standard for effectiveness research. *BJOG*, 125(13), 1716.

Harrell, F. E., Califf, R. M., Pryor, D. B., Lee, K. L., & Rosati, R. A. (1982). Evaluating the yield of medical tests. *JAMA*, 247(18), 2543-2546.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival forests.

Kim, S., Schaubel, D. E., & McCullough, K. P. (2018). A C-index for recurrent event data: application to hospitalizations among dialysis patients. *Biometrics*, 74(2), 734-743.

Kovalev, M. (2020). On the Complexity of Modern Machine Learning Algorithms. J. Comput. Sci., 48, 101234.

Krzyziński, P. (2023). Advances in Explainable Artificial Intelligence: A Survey of Methods and Applications. *Artif. Intell. Rev.*, 56(3), 1457-1481.

Liao, Q. V., Gruen, D., & Miller, S. (2020, April). Questioning the Al: informing design practices for explainable Al user experiences. In *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems* (pp. 1-15).

Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. *Proc. NeurIPS*, 31, 4765-4774.

References III

Markus, A. F., Kors, J. A., & Rijnbeek, P. R. (2021). The role of explainability in creating trustworthy artificial intelligence for health care. *J. Biomed. Inform.*, 113, 103655.

Medicine, T. L. R. (2018). Opening the black box of machine learning. Lancet Respir. Med., 6(11), 801.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell., 267, 1-38.

Murris, J., Charles-Nelson, A., Tadmouri Sellier, A., Lavenu, A., & Katsahian, S. (2023). Towards filling the gaps around recurrent events in high dimensional framework: a systematic literature review and application. *Biostat. Epidemiol.*, 7(1), e2283650.

Murris, J., Bouaziz, O., Jakubczak, M., Katsahian, S., & Lavenu, A. (2024). Random survival forests for the analysis of recurrent events for right-censored data, with or without a terminal event.

Porta, M. S., Greenland, S., Hernán, M., dos Santos Silva, I., & Last, J. M. (Eds.). (2014). A dictionary of epidemiology. *Oxford Univ. Press.*

Ribeiro, M. T. et al. (2016). "Why Should I Trust You?": Explaining the Predictions of Any Classifier. *Proc. ACM SIGKDD*, 1135-1144.

Schmidli, H., Roger, J. H., & Akacha, M. (2023). Estimands for recurrent event endpoints in the presence of a terminal event. *Stat. Biopharm. Res.*, 15(2), 238-248.

Wei, J., Mütze, T., Jahn-Eimermacher, A., & Roger, J. (2023). Properties of two while-alive estimands for recurrent events and their potential estimators. *Stat. Biopharm. Res.*, 15(2), 257-267.