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Key Facts

Among the most frequent cancers,
affecting over 70,000 patients annually

The second leading cause of cancer-related
deaths in France

Surgery is the primary treatment strategy

Public Health Concerns

What are the outcomes after the initial
cancer surgery?

What is the risk of complications or
mortality post-surgery?

Which factors contribute to readmissions?
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How to analyze multiple hospital readmissions over time for each patient?
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Patients with no readmissions over time

How to analyze multiple hospital readmissions over time for each patient?
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Patients with one or more readmissions over time

How to analyze multiple hospital readmissions over time for each patient?
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Patients who died during follow-up

How to analyze multiple hospital readmissions over time for each patient?
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Focus on the presence of at least one readmission?

Classification problem, Solution: logistic regressions, No consideration of multiple events

Focus on the number of readmissions at 6 months?

Regression problem, Solution: linear regressions, No consideration of time

Focus on time to first hospital readmission?

Survival problem, Solution: Survival analysis, No consideration of subsequent events

Focus on time to recurrent readmission
Survival problem, Solution: Survival analysis for recurrent events
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Definition
Stochastic processes that generate events of the same type repeatedly over time.

No event First event Second event

Censoring

When the exact time of an event is not fully observed for some subjects within the study period
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The Mean Cumulative Function is the marginal expected number of events in [0, t]:

µ(t) = E[N(t)]

Nelson-Aalen Estimator:

µ̂(t) =
∑

{h|t(h)≤t}

dN(t(h))

Y (t(h))

H distinct event times
across all n patients

dN(t) =
∑n

i=1 Yi (t)dNi (t)
total number of events observed

over [t, t +∆t)

Y (t) =
∑n

i=1 Yi (t)
total number at risk
over [t, t +∆t)

� Cook & Lawless (1997)
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Conditional models
� Andersen & Gill (1982), Prentice, Williams &
Peterson (1981)

Focus: intensity – instantaneous probability of
observing any event in a small time period [t; t+)

Time scale: counting process

Dependence structure between recurrent events
by full specification of the recurrent event
process

Marginal models
� Wei, Lin & Weissfeld (1989), Lee, Wei & Amato
(1992)

Focus: Marginal features – marginal distribution
of times to the first, second, third, ... event

Time scale: total time

Dependence structure between successive events
may remain unspecified
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State-of-the-art – Modeling strategies



No event First event Second event

Death

= with a terminal event
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MCF Non-parametric Estimator:

µ̂(t) =

∫ t

0
Ŝ(u−)

∑
i Yi (u)dNi (u)∑

i Yi (u)

Kaplan-Meier estimator
of survival just before u

increment
at time u

Modeling:

µ(t|Z ) =

µ0(t) · exp(βTZ ) if Z is time-independent∫ t
0 exp(βTZ (s)) dµ0(s) if Z is time-dependent

� Ghosh & Lin (2000, 2002)
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State-of-the-art – With a Terminal Event



Key challenges

How to manage situations with high-dimensional data?

How to select independent variables when dealing with recurrent events?

How to avoid overfitting and ensure reliable generalization to new data?

Current insights

Machine learning (ML) and survival counterparts
However, no ML algorithm specifically designed for recurrent events in a survival framework

� Murris (2023)
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Key Components

Splitting Rule: Identifies the optimal way to
partition data at each node.

Terminal Node Estimator: Selects the most
suitable estimator to summarize final nodes.

Pruning Strategy: Applies techniques to refine
and simplify the tree structure.

� Breiman (1996)
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� Ishwaran (2008)
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Splitting Rule: Maximize
Logrank test statistic

Terminal Node Estimator:
Kaplan-Meier estimator of
survival function

Pruning Strategy: At least 15
subjects in terminal nodes

Growing Survival Trees



Without a Terminal Event With a Terminal Event

Splitting Rule Maximize the Test Statistic

At each node, m ∈ N predictors Pseudo-score Wald test

are randomly selected test from Ghosh-Lin model

Terminal Node Estimator MCF Estimator µ̂b(t|x)

For tree b
∫ t

0
dNb(u)
Yb(u)

∫ t

0
Ŝb(u)

∑
i Yb,i (u)dNb,i (u)∑

i Yb,i (u)

Pruning Strategy A Minimal Number of Events and/or Individuals

� Murris (2024)
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Growing Survival Trees with Recurrent Events



Independent Bootstrap Samples

In-bag sample

Out-of-bag sample
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C-index widely used as a performance metric
� Harrell (1982)

Extension needed to take into account
subsequent event occurrences � Kim (2018)

New C-index based on event occurrence rate � Murris (2024)

Ĉrec =

∑n
i=1

∑n
j=1 1ri>rj × 1r̂i>r̂j∑n

i=1

∑n
j=1 1ri>rj

with ri =
Ni (Ti )
Ti

and r̂i =
µ̂(Ti |xi )

Ti
the observed and predicted event occurrence rates, respectively.
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No MSE metric for recurrent events until
very lately � Bouaziz (2023)

We adapted it for an ensemble framework

For each tree b,

M̂SEb(t, µ̂b) =
1

n

n∑
i=1

(∫ t

0

dNi (u)

Ĝc(u|x)
− µ̂b(t|x)

)2

Where Ĝc(u|x) = 1− Ĝ(u − |x) is an estimator of Gc(u|x) = 1− G(u − |x), the conditional
cumulative distribution function of the censoring variable C given x.

Therefore:

M̂SE (t, M̂) =
1

B

B∑
b=1

M̂SEb(t, µ̂b)
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But �

Two different models may lead to similar MSE
values over time.

Need for a score to represent the prediction gain compared to a reference estimator µ̂0 and we

define for each tree b

Scoreb(t, µ̂b, µ̂b,0) = M̂SEb(t, µ̂b,0)− M̂SEb(t, µ̂b)

Therefore:

Score(t, M̂) =
1

B

B∑
b=1

Scoreb(t, µ̂b, µ̂b,0)
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Input: Trained model f̂ , variable matrix Z , target vector y

1. Estimate the original model error errOOB from a chosen evaluation metric

2. For each feature j ∈ {1, . . . , p} do:
Generate feature matrix Zperm by permuting feature j in the data Z

Estimate error êrrZ
perm

OOB based on the predictions of the permuted data

Calculate permutation variable importance over B trees as:

VImp(j) =
1

B

B∑
b=1

(êrrZ
perm

OOB − errOOB)

Output: Importance scores for all variables

This breaks the association
between j and y
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Table: RecForest performances

C-index ↑ IMSE ↓ IScore ↑
0.72 1,398.04 409.32

Importance of Variables

Demographics, ICD-10 codes, Procedures,
Comorbidity indices, Surgery types

Most important: %Vimp ≥ 4%

Moderately important: 1% ≤ %Vimp < 4%

Least important: %Vimp < 1%

� Murris (2025?)
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RecForest

� Oncology
Analysis of cancer re-
lapses, progressions

¿ Chronic Diseases
Hospital readmissions,

chronic episodes, flare-ups

� Infectious Diseases
Recurrent infections
(e.g., HIV, Hepatitis)

♥ Cardiovascular Events
Heart failures,
strokes, angina

� Psychiatric Disorders
MDD relapses,
schizophrenia

r Orthopedic Surgery
Pain recurrence,
complications
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RecForest

� Non-Parametric when no terminal event
� High-Dimensional Data

� Robust to Multicollinearity
� Variable Importance

3 metrics for performance evaluation

A powerful and flexible tool for recurrent events analysis in many medical fields

Allows for potential extensions, e.g. tree-based boosting techniques
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