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Today’s talk

1. Introducing survival data and recurrent events

2. Developing adequate decision trees

3. A simulation study
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Introducing survival data and
recurrent events



What survival data are made of

In medical research, survival endpoints are composite:

• Binary information – did the event occur?
• Continuous time – when did it occur?
• E.g., overall survival, progression-free survival
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The advent of machine learning

■ Usual machine learning algorithms have been extended to account for survival data

■ But not to account for survival data and recurrent events.

The objective for today is to introduce a new approach to
model recurrent events using learning techniques.
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Developing adequate decision trees



Further words on recurrent events

Let Ni = (t) the cumulative number of events for the individual i = 1, ..., n over the interval
[0, t], t ∈ [0, T] with T the longest follow-up time overall

• The mean cumulative function (MCF) writes µ(t) = E[Ni(t)],

• The Nelson-Aalen MCF estimator writes µ̂(t) =
∑n

i=1
∫ t

0
dNi(u)
δ(u)

with δ(t) =
∑n

i=1 δi(t) and δi(t) indicates whether the individual i is at risk at time t.

Pseudo-score test from Cook, Lawless & Nadeau can be used to compare two MCFs. H0 is
no difference across MCFs. For two sub-samples A and B, the test statistic writes

U(t) =
∫ t

0

δA(u)δB(u)
δA(u) + δB(u)

(dµ̂A(u)− dµ̂B(u)). (1)
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Growing decision trees
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Growing survival decision trees with recurrent events

The splitting rule

• At each node,m ∈ N predictors are randomly selected

• A greedy algorithm for optimal threshold research to maximize the pseudo-score
test statistic

Estimates for terminal nodes

• The MCF estimator for individual i with xi vector of predictors writes

µ̂(t|xi) = µ̂h(t)× ⊮xi∈h, (2)

• µ̂h is the MCF estimator constructed at the terminal node h

Pruning

• Trees grow up until each terminal node contains at least ξ ∈ N individuals. 7



A simulation study



A few words on the simulation scheme

• Given the covariates zi, the intensity function of time t is as follows

λ(t|zi) = r0(t)× r(zi, β) (3)

with r0(t) the baseline hazard rate function of time t, r(zi, β) the relative risk function,
and β the covariate coefficients

• Homogeneous Poisson Process (i.e., constant hazard rate over time) with the times
between two successive events following exponential distribution

Today, we will go through 3 scenarii with n = 100 stochastic processes and p = 10
predictors:

1. {β1 = 0.5, β2:10 = 0}

2. {β1 = 0.8, β2 = 0.5, β3:10 = 0}

3. {β1 = 0.8, β2 = 0.5, β3 = 0.5, β4:10 = 0} 8



Some good performance observed!

k-fold cross-validation was performed to determine bestm = {√p, p} number of predictors selected at each
node and ξ individuals at terminal node.
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We are interested in predictors too

To what extent do "good" models use the right predictors?

Mean ± sd β1 β2 β3

Scenario 1 0.11 ± 0.26 0.00 ± 0.00 0.18 ± 0.34
Scenario 2 0.14 ± 0.27 0.00 ± 0.00 0.00 ± 0.00
Scenario 3 0.10 ± 0.09 0.07 ± 0.02 0.11 ± 0.02

Table 1: Variable importance using permutations
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Discussion & Conclusion



Main limitations

• Overfitting - inherent from decision trees’ structure
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To wrap-up

• Decision trees are simple and easily accessible

• Such an approach constitutes a solid baseline for many extensions

For this reason, the approach we propose is a valuable contribution for analysing
recurrent events in medical research.
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Thank you for your attention!
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