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Introduction



Prediction models

There are thousands of prediction models in the medical literature

Use ”baseline” variables to predict an outcome (most of time occurrence of an event):

diagnosis or prognosis

• Binary (dead/alive): logistic regression

• Survival: Cox regression

• Continuous (rare): linear regression

But any other approach could be used (e.g. random forests, neural networks, SVM,

etc.)
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Examples

Short-term outcome (binary)

• Hospital mortality – SAPS-II (Simplified Acute Physiology Score), APACHE II/III

Longer-term outcome

• 10-year cardiovascular disease risk – Framingham risk score, QRISK2

• 2-year non-relapse mortality – HCT-CI (comorbidity index)

• 12-year recurrence after radical prostatectomy
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What is a good prediction model?

”All models are wrong, but some are useful” Box (1976)

• Multiple definitions and perspectives:

• A model is ”good” if it is useful – but how do we define usefulness?

• The ultimate goal: positively impacting patient outcomes (gold standard, but rare).

• Steps before assessing therapeutic or clinical impact:

• Focus first on evaluating how well the model performs.

• Key Aspects of model performance:

1. Calibration: How closely do predicted probabilities align with observed outcomes?

2. Discrimination: How effectively does the model differentiate between cases (e.g.,

diseased) and controls (e.g., non-diseased)?
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Evaluating performance



Concordance Index for Survival Analysis

What is the Concordance Index?

• The most common method for evaluating survival models is based on the relative

risk of an event rather than the absolute survival times.

• This is done by calculating the concordance probability or the concordance index

(C -index).

C = P(ηi > ηj |Ti < Tj), (1)

where ηi is the risk score for individual i and Ti is the observed survival time.

Key References: Harrell (1982), Uno (2011), Gerds (2013)
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C-index by Harrell (1982)

ĈH =

∑
i ̸=j 1(η̂i > η̂j)1(Ti < Tj , δi = 1)∑

i ̸=j 1 (Ti < Tj , δi = 1)
, (2)

where η̂i is the predicted risk score, δi is an indicator for censoring, and Ti ,Tj are the

survival times.

• The numerator counts the concordant pairs, i.e., pairs where the model correctly

predicts the order of events.

• The denominator normalizes by the total number of comparable pairs.

7



C-index by Uno (2011) with IPCW

• Uno et al. (2011) extended the C-index by introducing inverse probability of

censoring weighting (IPCW)

• This method accounts for the censoring mechanism in survival data, improving

the accuracy of the C-index estimation

ĈUno =

∑
i ̸=j 1(η̂i > η̂j)1(Ti < Tj , δi = 1)ŵi (Ti )∑

i ̸=j 1(Ti < Tj , δi = 1)ŵi (Ti )
, (3)

where

ŵi (Ti ) =


δi

Ĝ(Ti )
if Ti ≤ t,

1
Ĝ(Ti )

if Ti > t,
(4)

with Ĝ (Ti ) is the estimated Kaplan-Meier estimate of the censoring distribution.
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C-index for Specific Follow-Up Period

Time-Dependent C-index: To evaluate performance over a fixed follow-up period

[0, t∗], Heagerty (2005) defined the time-dependent C -index.

The time-dependent AUC at a given time t is calculated as:

AUC(t) = P(ηi < ηj |Ti < t,Tj > t), (5)

and the time-dependent C-index is:

Ĉt∗ =
∑
t

ÂUC(t) · num(t), (6)

where ÂUC(t) is the estimated AUC at time t.
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Brier Score for Survival Models

• Initially developed for weather forecasting (Brier 1950), the Brier score assesses

the accuracy of probabilistic predictions.

• For binary outcomes, it is equivalent to the mean squared error.

BS =
1

N

N∑
i=1

[ŷi − yi ]
2 , (7)

where ŷi is the predicted probability and yi is the actual outcome.
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Brier Score for Survival with Censoring

• The Brier score is extended for survival analysis by adjusting for censoring (Graf

1999)

• The individual contributions are weighted according to the censoring distribution.

Weighted Brier Score Formula:

BS(t) =
1∑N

i=1 Yi (t)

N∑
i=1

ŵi (t)
[
Ŝi (t)− 1(Ti > t)

]2
, (8)

where ŵi (t) is the weight for individual i , and Ŝi (t) is the predicted survival probability.
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Integrated Brier Score (IBS)

• The Integrated Brier Score (IBS) evaluates the overall performance of a model

over a period of time.

• It is defined as the integral of the Brier score over the time period [τ1, τ2].

IBS =
1

τ2 − τ1

∫ τ2

τ1

BS(t) dt. (9)

• τ1 = 0 and τ2 is typically the maximum observed follow-up time.

• The IBS provides an overall assessment of model calibration over time.
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Mean Absolute Error (MAE) for Survival

• The Mean Absolute Error (MAE) measures the average absolute difference

between predicted and observed survival times.

• For survival analysis, MAE is only calculated for uncensored observations.

MAE =
1

N

N∑
i=1

δi |Ti − T̂i |, (10)

where δi is an indicator for event occurrence, and Ti and T̂i are the observed and

predicted survival times, respectively.
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Addressing Censoring in MAE

Challenges with Censoring:

• A näıve approach excludes censored subjects from MAE calculation, but this may

introduce bias, especially with high censoring rates.

Advanced Approaches:

• Using inverse probability censoring weighting to account for censored observations

(Haider 2020)

• MAE-margin: Assigning a ”best guess” margin time to censored subjects based

on Kaplan-Meier estimators (Qin 2023)
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Building prediction models



The aim of the model

• To be considered at the very beginning:

• What does the model aim to clinically achieve?
• When and where will it be used?

• Will it be implemented in a computer or app?

• What resources are needed?

• Does it rely on readily available information, or

• Are additional data (e.g., lab values) required?

• What is the desired ”final product”?

• A calculator?

• A tool that is quick and easy to use?

• A simplified model for specific contexts?
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Which predictors?

• Common temptation: Include everything

• Risk of overfitting.

• Use subject matter (clinical) expertise:

• Knowledge almost always exists – leverage expertise.

• While medicine has many unknowns, there is considerable knowledge on

pathophysiology.

• Avoid including irrelevant predictors, especially when data availability is limited.

• Consider sample size:

• No explicit sample size formula, but follow the rule of thumb:

• 10 to 20 events per variable (EPV).

• Small EPV increases the risk of overfitting.
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Overfitting and Underfitting

Definition: Overfitting and underfitting describe how a model generalizes from

training data (Bishop 2006)

Key Concepts:

• Overfitting: Model fits training data too well, capturing noise.

• Symptoms: High complexity, poor test performance.

• Underfitting: Model is too simple to capture data patterns.

• Symptoms: Poor performance on both training and test data.

Goal: Achieve a balance between complexity and generalization (Hasite 2009)
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Bias-Variance Trade-off

Definitions:

• Bias: Error due to overly simplistic assumptions.

• Variance: Error due to sensitivity to data fluctuations.

Trade-off:

• Increasing model complexity reduces bias but increases variance.

• Objective: Find the optimal balance for generalization.
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Model Evaluation and Validation

Objective: Evaluate the model’s ability to generalize to unseen data (Hastie 2009)

Train-test split (e.g., 80%-20%)

Cross-validation for robust evaluation
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Hyperparameter Optimization

Definition: Hyperparameters influence model behavior and must be tuned for optimal

performance.

Key Techniques:

• Grid search: Systematic search over a parameter grid.

• Random search: Randomized sampling of hyperparameter space.

• Bayesian optimization: Probabilistic model for optimization.

Warning: Avoid overfitting the validation set; use separate test data.
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External validation



Rationale

We have seen before the development of the model with internal validation.

How well does the model perform on new unseen data?

• On another center,

• Data collected in another time batch,

• ...
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Existing (yet imperfect) solutions

Challenges in External Validation:

• Data from external sources may differ in terms of quality, availability, and

measurement techniques.

• Requires careful consideration of heterogeneity between training and validation

datasets.

Best Practices for External Validation:

• Ensure similarity in data structure (e.g., outcome definitions, predictor

variables).

• Perform stratified analysis to assess performance across different subgroups.

• Report performance metrics for external datasets.
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Handling different data distributions (Andrew Ng’s reco)

1. Mix a small portion of external data into the training set:

• Take a small subset of the external validation data and combine it with the original

training data.

• This helps to expose the model to the new distribution, reducing the risk of poor

performance due to distributional differences.

2. Fine-tune the model on the augmented training set:

• After mixing the data, fine-tune the model on the combined training data to allow

the model to adapt to the new distribution.

• Fine-tuning ensures that the model can generalize better to both the original and the

new distribution.
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TP1
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