# Prediction models for survival analysis

M2 Données massives en santé

Juliette Murris Januray 2025

# Outline

Introduction

Evaluating performance

Concordance Index

Brier Score

Mean Absolute Error (MAE)

Building prediction models

External validation

TP1

# Introduction

There are thousands of prediction models in the medical literature

Use "baseline" variables to predict an outcome (most of time occurrence of an event): diagnosis or prognosis

- Binary (dead/alive): logistic regression
- Survival: Cox regression
- Continuous (rare): linear regression

But any other approach could be used (e.g. random forests, neural networks, SVM, etc.)  $% \left( {{\left( {{{\rm{B}}_{\rm{s}}} \right)}_{\rm{s}}}} \right)$ 

### Short-term outcome (binary)

• Hospital mortality - SAPS-II (Simplified Acute Physiology Score), APACHE II/III

#### Longer-term outcome

- 10-year cardiovascular disease risk Framingham risk score, QRISK2
- 2-year non-relapse mortality HCT-CI (comorbidity index)
- 12-year recurrence after radical prostatectomy

## What is a good prediction model?

"All models are wrong, but some are useful" Box (1976)

- Multiple definitions and perspectives:
  - A model is "good" if it is useful but how do we define usefulness?
  - The ultimate goal: positively impacting patient outcomes (gold standard, but rare).
- Steps before assessing therapeutic or clinical impact:
  - Focus first on evaluating how well the model performs.
- Key Aspects of model performance:
  - 1. Calibration: How closely do predicted probabilities align with observed outcomes?
  - 2. **Discrimination:** How effectively does the model differentiate between cases (e.g., diseased) and controls (e.g., non-diseased)?

# **Evaluating performance**

### **Concordance Index for Survival Analysis**

#### What is the Concordance Index?

- The most common method for evaluating survival models is based on the relative risk of an event rather than the absolute survival times.
- This is done by calculating the concordance probability or the concordance index (*C*-index).

$$\mathbb{C} = \mathbb{P}(\eta_i > \eta_j | T_i < T_j), \tag{1}$$

where  $\eta_i$  is the risk score for individual *i* and  $T_i$  is the observed survival time.

Key References: Harrell (1982), Uno (2011), Gerds (2013)

$$\hat{\mathbb{C}}_{\mathsf{H}} = \frac{\sum_{i \neq j} 1(\hat{\eta}_i > \hat{\eta}_j) 1(T_i < T_j, \delta_i = 1)}{\sum_{i \neq j} 1(T_i < T_j, \delta_i = 1)},$$
(2)

where  $\hat{\eta}_i$  is the predicted risk score,  $\delta_i$  is an indicator for censoring, and  $T_i$ ,  $T_j$  are the survival times.

- The numerator counts the concordant pairs, i.e., pairs where the model correctly predicts the order of events.
- The denominator normalizes by the total number of comparable pairs.

# C-index by Uno (2011) with IPCW

- Uno et al. (2011) extended the C-index by introducing inverse probability of censoring weighting (IPCW)
- This method accounts for the censoring mechanism in survival data, improving the accuracy of the C-index estimation

$$\hat{\mathbb{C}}_{\text{Uno}} = \frac{\sum_{i \neq j} 1(\hat{\eta}_i > \hat{\eta}_j) 1(T_i < T_j, \delta_i = 1) \hat{w}_i(T_i)}{\sum_{i \neq j} 1(T_i < T_j, \delta_i = 1) \hat{w}_i(T_i)},$$
(3)

where

$$\hat{w}_{i}(T_{i}) = \begin{cases} \frac{\delta_{i}}{\hat{G}(T_{i})} & \text{if } T_{i} \leq t, \\ \frac{1}{\hat{G}(T_{i})} & \text{if } T_{i} > t, \end{cases}$$

$$\tag{4}$$

with  $\hat{G}(T_i)$  is the estimated Kaplan-Meier estimate of the censoring distribution.

**Time-Dependent C-index:** To evaluate performance over a fixed follow-up period  $[0, t^*]$ , Heagerty (2005) defined the time-dependent *C*-index. The time-dependent AUC at a given time *t* is calculated as:

$$AUC(t) = \mathbb{P}(\eta_i < \eta_j | T_i < t, T_j > t),$$
(5)

and the time-dependent C-index is:

$$\hat{\mathbb{C}}_{t^*} = \sum_t \widehat{\mathsf{AUC}}(t) \cdot \mathsf{num}(t), \tag{6}$$

where  $\widehat{AUC}(t)$  is the estimated AUC at time t.

- Initially developed for weather forecasting (Brier 1950), the Brier score assesses the accuracy of probabilistic predictions.
- For binary outcomes, it is equivalent to the mean squared error.

$$\mathsf{BS} = \frac{1}{N} \sum_{i=1}^{N} \left[ \hat{y}_i - y_i \right]^2, \tag{7}$$

where  $\hat{y}_i$  is the predicted probability and  $y_i$  is the actual outcome.

### Brier Score for Survival with Censoring

- The Brier score is extended for survival analysis by adjusting for censoring (Graf 1999)
- The individual contributions are weighted according to the censoring distribution.

#### Weighted Brier Score Formula:

$$\mathsf{BS}(t) = \frac{1}{\sum_{i=1}^{N} Y_i(t)} \sum_{i=1}^{N} \hat{w}_i(t) \left[ \hat{S}_i(t) - 1(T_i > t) \right]^2, \tag{8}$$

where  $\hat{w}_i(t)$  is the weight for individual *i*, and  $\hat{S}_i(t)$  is the predicted survival probability.

- The Integrated Brier Score (IBS) evaluates the overall performance of a model over a period of time.
- It is defined as the integral of the Brier score over the time period  $[\tau_1, \tau_2]$ .

$$\mathsf{IBS} = \frac{1}{\tau_2 - \tau_1} \int_{\tau_1}^{\tau_2} \mathsf{BS}(t) \, dt. \tag{9}$$

- $\tau_1 = 0$  and  $\tau_2$  is typically the maximum observed follow-up time.
- The IBS provides an overall assessment of model calibration over time.

## Mean Absolute Error (MAE) for Survival

- The Mean Absolute Error (MAE) measures the average absolute difference between predicted and observed survival times.
- For survival analysis, MAE is only calculated for uncensored observations.

$$\mathsf{MAE} = \frac{1}{N} \sum_{i=1}^{N} \delta_i |T_i - \hat{T}_i|, \qquad (10)$$

where  $\delta_i$  is an indicator for event occurrence, and  $T_i$  and  $\hat{T}_i$  are the observed and predicted survival times, respectively.

# Addressing Censoring in MAE

#### Challenges with Censoring:

• A naïve approach excludes censored subjects from MAE calculation, but this may introduce bias, especially with high censoring rates.

### **Advanced Approaches:**

- Using inverse probability censoring weighting to account for censored observations (Haider 2020)
- **MAE-margin:** Assigning a "best guess" margin time to censored subjects based on Kaplan-Meier estimators (Qin 2023)

# **Building prediction models**

## The aim of the model

- To be considered at the very beginning:
  - What does the model aim to clinically achieve?
  - When and where will it be used?
    - Will it be implemented in a computer or app?
- What resources are needed?
  - Does it rely on readily available information, or
  - Are additional data (e.g., lab values) required?
- What is the desired "final product"?
  - A calculator?
  - A tool that is quick and easy to use?
  - A simplified model for specific contexts?

## Which predictors?

- Common temptation: Include everything
  - Risk of overfitting.
- Use subject matter (clinical) expertise:
  - Knowledge almost always exists leverage expertise.
  - While medicine has many unknowns, there is considerable knowledge on **pathophysiology**.
  - Avoid including irrelevant predictors, especially when data availability is limited.
- Consider sample size:
  - No explicit sample size formula, but follow the rule of thumb:
    - 10 to 20 events per variable (EPV).
  - Small EPV increases the risk of overfitting.

**Definition:** Overfitting and underfitting describe how a model generalizes from training data (Bishop 2006)

Key Concepts:

- Overfitting: Model fits training data too well, capturing noise.
  - Symptoms: High complexity, poor test performance.
- Underfitting: Model is too simple to capture data patterns.
  - Symptoms: Poor performance on both training and test data.

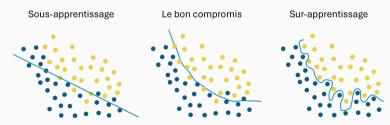
Goal: Achieve a balance between complexity and generalization (Hasite 2009)

### Definitions:

- Bias: Error due to overly simplistic assumptions.
- Variance: Error due to sensitivity to data fluctuations.

# Trade-off:

- Increasing model complexity reduces bias but increases variance.
- Objective: Find the optimal balance for generalization.



## Model Evaluation and Validation

**Objective:** Evaluate the model's ability to generalize to unseen data (Hastie 2009) Train-test split (*e.g.*, 80%-20%)

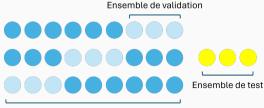


## Model Evaluation and Validation

**Objective:** Evaluate the model's ability to generalize to unseen data (Hastie 2009) Train-test split (*e.g.*, 80%-20%)



Cross-validation for robust evaluation



Ensemble d'entraînement

**Definition:** Hyperparameters influence model behavior and must be tuned for optimal performance.

**Key Techniques:** 

- Grid search: Systematic search over a parameter grid.
- Random search: Randomized sampling of hyperparameter space.
- Bayesian optimization: Probabilistic model for optimization.

Warning: Avoid overfitting the validation set; use separate test data.

# **External validation**

We have seen before the development of the model with internal validation.

How well does the model perform on new unseen data?

- On another center,
- Data collected in another time batch,
- ...

# Existing (yet imperfect) solutions

#### **Challenges in External Validation:**

- Data from external sources may differ in terms of **quality**, **availability**, and **measurement techniques**.
- Requires careful consideration of **heterogeneity** between training and validation datasets.

### **Best Practices for External Validation:**

- Ensure **similarity in data structure** (e.g., outcome definitions, predictor variables).
- Perform stratified analysis to assess performance across different subgroups.
- Report **performance metrics** for external datasets.

# Handling different data distributions (Andrew Ng's reco)

- $1. \ \mbox{Mix}$  a small portion of external data into the training set:
  - Take a small subset of the external validation data and combine it with the original training data.
  - This helps to expose the model to the new distribution, reducing the risk of poor performance due to distributional differences.
- 2. Fine-tune the model on the augmented training set:
  - After mixing the data, fine-tune the model on the combined training data to allow the model to adapt to the new distribution.
  - Fine-tuning ensures that the model can generalize better to both the original and the new distribution.

 $\mathsf{TP1}$ 

# TP1