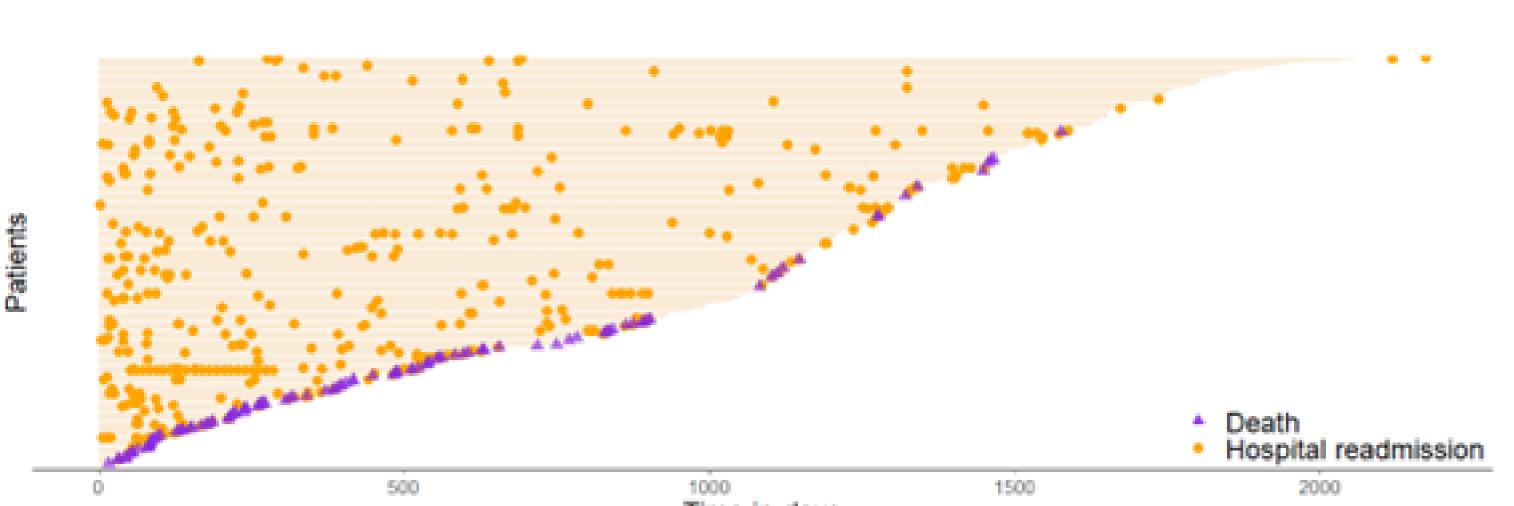


## AliH 2024 : Artificial Intelligence in Healthcare 4 | 6 SEPTEMBER

# Predicting Hospital Readmission after Cancer Surgery with Survival Analysis and Machine Learning

## Juliette Murris\*, Sandrine Katsahian<sup>†</sup>, <u>Audrey Lavenu<sup>‡</sup></u>

\* HeKA, Inserm, Inria, Université Paris Cité, Pierre Fabre R&D, †Centre d'Investigation Clinique, Paris, France ‡ Institut de Recherche Mathématique de Rennes (IRMAR), Rennes, France



## Background, data and objectives

- **Available options within a survival framework**
- Time-to-first event (either readmission or death)
- Time-to-reccurence, with or without death

#### The advent of machine learning

- Usual machine learning algorithms have been extended to account for survival data
- But not to account for survival data and recurrent events, with or without a terminal

#### Time in days

- Readmission dataset from the frailtypack R package,
- Multiple rehospitalizations after surgery,
- 403 patients diagnosed with colorectal cancer,
- In average, there were 1.13 hospital readmissions per patients, with 199 patients with no admission and a total of 106 deaths.

#### event.

### **Objectives**



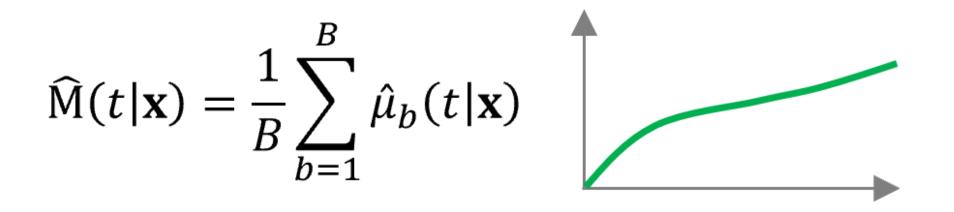
> Application on hospital readmission after cancer surgery

| METHODS                                                                                |                                                                                                                                  |                                                                                         |                  |                     |                  |  |  |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|---------------------|------------------|--|--|--|--|
| <b>RecForest Algorithm</b>                                                             | Without a terminal event                                                                                                         | With a terminal event                                                                   |                  |                     |                  |  |  |  |  |
| (1) Draw <i>B</i> <b>bootstrap</b> samples from                                        | om the learning data;                                                                                                            |                                                                                         |                  |                     |                  |  |  |  |  |
| (2) Grow a survival tree b extend                                                      | ded to recurrent events;                                                                                                         |                                                                                         |                  |                     |                  |  |  |  |  |
| Splitting rule                                                                         | Maximize the test statistic                                                                                                      |                                                                                         |                  | ••                  |                  |  |  |  |  |
| At each node, $mtry$ predictors<br>are randomly selected with<br>$mtry \in \mathbb{N}$ | Pseudo score test from NP estimates                                                                                              | Wald test from Ghosh-Lin model                                                          | $\hat{\mu}_1(t)$ | μ̂ <sub>2</sub> (t) | $\hat{\mu}_B(t)$ |  |  |  |  |
| <b>Terminal node estimator</b><br>for tree <i>b</i>                                    | $\hat{\mu}_b(t \mathbf{x}) = \hat{R}_b(t \mathbf{x}) = \int_0^t \frac{N_b(\mathrm{d}u \mathbf{x})}{Y_b(\mathrm{d}u \mathbf{x})}$ | $\hat{\mu}_b(t \mathbf{x}) = \int_0^t \hat{S}_b(u \mathbf{x}) d\hat{R}_b(u \mathbf{x})$ | L                |                     | J                |  |  |  |  |

| Pruning | strategy |
|---------|----------|
|---------|----------|

A minimal number of events and/or a minimal number of individuals

(3) **Estimate**  $\widehat{M}$  is computed over the *B* trees.



### Results

#### 1. Performances, using adapted versions of C-index and MSE

| Metric    | Np         | GL1        | GL2        | GL3        | GL4        | RecForest | GL*        |
|-----------|------------|------------|------------|------------|------------|-----------|------------|
| C-index ↑ | 0.58       | 0.53       | 0.48       | 0.48       | 0.45       | 0.80      | 0.60       |
|           | (0.05)     | (0.08)     | (0.08)     | (0.07)     | (0.05)     | (0.04)    | (0.06)     |
| IMSE 🗸    | 7 883.50   | 7 843.99   | 8 361.16   | 8 229.08   | 9 981.50   | 706.02    | 7 934.28   |
|           | (6 229.47) | (6 106.36) | (6 292.29) | (6 478.35) | (6 064.23) | (508.96)  | (6 606.23) |

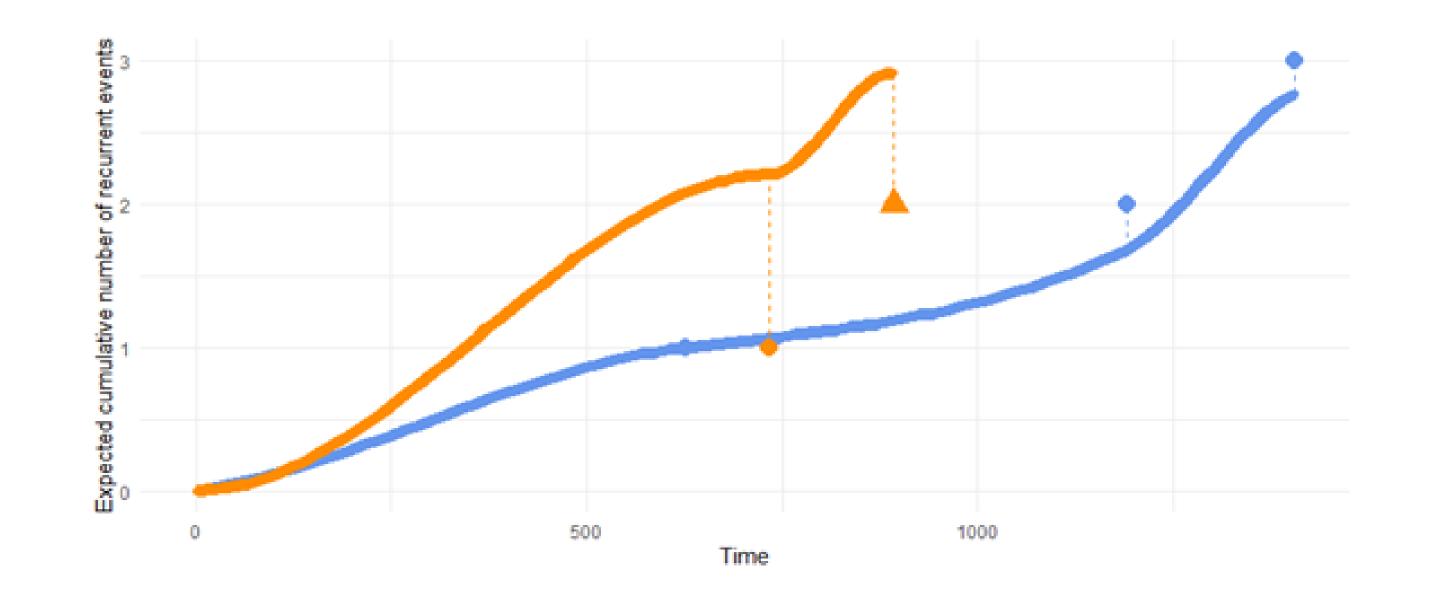
2. Variable importance to measure impact on predictions



#### - The non-parametric estimator registers a C-index = 0.58.

- RecForest outperforms with C-index = 0.80.
- All GL models with one to four covariates for adjustment, maintain relatively consistent C-indices around 0.45 to 0.53.
- IMSE for RecForest indicate lower margin of errors.
- Variable importance for RecForest was based on both the C-index and the opposite of the integrated MSE.
- Most important variable identified by RecForest was the Charlson comorbidity index.

#### **3.** Predictions for new data





Factors are sex (M/F), chemotherapy treatment (Yes/No), Dukes tumoral stage (with levels A-B, C, and D), and comorbidity Charlson's index (with levels 0, 1-2, and  $\geq$  3).

#### **DISCUSSION & CONCLUSION**

- Our approach is simple and easily accessible in order to resolve highdimensional problems involving recurrent events.
- Our algorithm benefits from random forests features (ability of handling missing data or multicollinearity, reducing overfitting with bagging principle).

**RecForest** is a **valuable contribution** for analysing recurrent events in medical research

- We build prediction curves for RecForest as the expected number of recurrent events.
- We focus on 2 patients :
  - one with the highest Charlson comorbidity score (in orange), the model predicted 3 readmissions as the patient dies after two observed readmissions.
  - and the other with the lowest Charlson comorbidity score (in blue), the patient in blue, the model predictions are in line with observed events.

#### **BIBLIOGRAPHY**

Andrews DF, Hertzberg AM (1985) Bouaziz, O. (2023) Breiman, L. (2001) Cook, R. J., & Lawless, J. (2007) Devaux, A, et. Al (2023) Feurer, M., & Hutter, F. (2019) Harrell Jr, F. E., Lee, K. L., & Mark, D. B. (1996) Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009)

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008) Kaplan, E. L., & Meier, P. (1958) Kim, S., Schaubel, D. E., & McCullough, K. P. (2018) Kvamme, H., & Borgan, Ø. (2019) Murris, J., Charles-Nelson, A., Lavenu, A., & Katsahian, S. (2022) Nelson, W. B. (2003) Therneau, T., Grambsch, P., & Fleming, T. (1990)