
Random survival forest for survival data with recurrent events

Juliette Murris1 Audrey Lavenu2 Sandrine Katsahian3

September 2023
Survival Analysis for Junior Researchers

Ulm, Germany

1HeKA, Inria Paris - Inserm, Université Paris Cité, Pierre Fabre,
2CIC-1414 Inserm, IRMAR - CNRS 6625, Université de Rennes 1,
3CIC-1418 HEGP, AP-HP, HeKA, Inria Paris - Inserm, Université Paris Cité

1



Today’s talk

1. Motivation for modelling recurrent events

2. Growing decision trees and ensemble random forests

3. Application based on a simulation study
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Motivation for modelling recurrent
events



What survival data aremade of
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The advent of machine learning

■ Usual machine learning algorithms have been extended to account for survival data

■ But not to account for survival data and recurrent events.

The objective for today is to introduce a new approach to
model recurrent events using ensemblemethods.
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Growing decision trees and ensemble
random forests



Using non-parametric principles from recurrent events analysis

Let Ni = (t) the cumulative number of events for the individual i = 1, ..., n over the interval
[0, t], t ∈ [0, T] with T the longest follow-up time overall

• The mean cumulative function (MCF) writes µ(t) = E[Ni(t)],

• The Nelson-Aalen MCF estimator writes µ̂(t) =
∑n

i=1
∫ t

0
dNi(u)
δ(u)

with δ(t) =
∑n

i=1 δi(t) and δi(t) indicates whether the individual i is at risk at time t.

Pseudo-score test from Cook, Lawless & Nadeau can be used to compare two MCFs. H0 is
no difference across MCFs. For two sub-samples A and B, the test statistic writes

U(t) =
∫ t

0

δA(u)δB(u)
δA(u) + δB(u)

(dµ̂A(u)− dµ̂B(u)). (1)
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Growing decision trees
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Growing survival decision trees with recurrent events

The splitting rule

• At each node,m ∈ N predictors are randomly selected

• A greedy algorithm for optimal threshold research tomaximize the pseudo-score
test statistic

Estimates for terminal nodes

• TheMCF estimator for individual i with xi vector of predictors writes

µ̂(t|xi) = µ̂h(t)× 1xi∈h, (2)

• µ̂h is the MCF estimator constructed at the terminal node h

Pruning

• Trees grow up until each terminal node contains at least ξ ∈ N individuals.
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Aggregating to build random forests

︸ ︷︷ ︸
Ensemble estimator is the average of the estimates over all ntree trees

Ĥ(t|xi) =
1

ntree

ntree∑
1

µ̂(t|xi) (3)
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Concordance error rate and evaluation

• C-index widely used as a performance metric (Harrell, 1996)

• Extension needed to take into account subsequent event occurrences (Kim, 2018)

The proposed C-index is based on event occurrence rate to tackle inter-individual
heterogeneity

Ĉrec =
∑n

i=1
∑n

j=1 1ri>rj × 1r̂i>r̂j∑n
i=1

∑n
j=1 1ri>rj

(4)

with ri = Ni(Ti)
Ti and r̂i = µ̂(Ti|xi)

Ti the observed and predicted event occurrence rates,
respectively.

OOB prediction error is measured by 1 − Ĉrec.
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Application



Simulation study

• Given the covariates zi, the intensity function of time t is as follows

λ(t|zi) = r0(t)× r(zi, β) (5)

with r0(t) the baseline hazard rate function of time t, r(zi, β) the relative risk function,
and β the covariate coefficients.

• Homogeneous Poisson Process (i.e., constant hazard rate over time) with the times
between two successive events following exponential distribution

Today, we will go through 3 scenariiwith n = 500 stochastic processes and p = 10 binary
predictors:

1. {β1 = 3, β2:10 = 0}

2. {β1 = 3, β2 = 2, β3:10 = 0}

3. {β1 = 3, β2 = 2, β3 = 1, β4:10 = 0} 10



Simulation study - OOB and test prediction errors

OOB and test prediction errors were estimated from 30 independent bootstrap replicates and 50 trees were
grown for each random forest.
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Discussion & Conclusion



Towrap-up

Perspectives

• Extensive experiments to be conducted on real and simulated datasets

• Feature importance

• Hyperparameter optimisation

Our approach is simple and easily accessible and constitutes a solid baseline for many
extensions.

For this reason, the approach we propose is a valuable contribution for analysing
recurrent events in medical research.
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Thank you for your attention!
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