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Today’s talk

1. Motivating example

2. Growing decision trees and ensemble random forests

3. Application based on open-source data
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Motivating example



What survival data aremade of

Figure 1: Readmission dataset (source: frailtypack, R)

How to predict the number of hospital readmissions over time for each patient?
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What options do we have?

• Focus on first hospital readmission?

• Focus on time to death?

• Focus on the number of hospital readmissions regardless of time?

• Focus on time to recurrent readmission

• Focus on time to recurrent readmission with a terminal event
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The advent of machine learning

■ Usual machine learning algorithms have been extended to account for survival data

■ But not to account for survival data and recurrent events, with or without a terminal
event.

The objective for today is to introduce a new approach to
model recurrent events using ensemblemethods.
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Growing decision trees and ensemble
random forests



Background on recurrent events survival analysis

Let N(t) the cumulative number of events over the interval [0, t], t ∈ [0, T] with T the
longest follow-up time overall

• The mean cumulative function (MCF) writes µ(t) = E[N(t)],

• Without a terminal event - We use the Nelson-Aalen MCF estimator

µ̂(t) =
∫ t

0

dN(u)
Y(u)

(1)

with N(t) =
∑

i Ni(t), and Y(t) =
∑

i Yi(t) the number of individuals at risk at time t

• With a terminal event - We incorporate the Kaplan-Meier estimator of the survival
function of the terminal event

µ̂(t) =
∫ t

0
Ŝ(u)

∑
i Yi(u)dNi(u)∑

i Yi(u)
(2)

6



Background on recurrent events survival analysis

Let N(t) the cumulative number of events over the interval [0, t], t ∈ [0, T] with T the
longest follow-up time overall

• The mean cumulative function (MCF) writes µ(t) = E[N(t)],

• Without a terminal event - We use the Nelson-Aalen MCF estimator

µ̂(t) =
∫ t

0

dN(u)
Y(u)

(1)

with N(t) =
∑

i Ni(t), and Y(t) =
∑

i Yi(t) the number of individuals at risk at time t

• With a terminal event - We incorporate the Kaplan-Meier estimator of the survival
function of the terminal event

µ̂(t) =
∫ t

0
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Growing decision trees

Figure 2: How to grow a tree

Bucket list:
• A splitting rule at each node
• A terminal node estimator
• A pruning strategy
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Growing survival decision trees
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Growing survival decision trees with recurrent events

Without a terminal event With a terminal event
Splitting rule Maximize the test statistic

At each node,m ∈ N predictors Pseudo-score test Wald test
are randomly selected from np estimates from Ghosh-Lin model

Terminal node estimator µ̂b(t|x) µ̂b(t|x)
for tree b =

∫ t
0
dNb(u)
Yb(u)

=
∫ t

0 Ŝb(u)
∑

i Yb,i(u)dNb,i(u)∑
i Yb,i(u)

Pruning strategy A minimal number of events
and/or a minimal number of individuals
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Aggregating to build random forests
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Performance evaluation
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Performance evaluation - (a) The concordance index

• C-index widely used as a performance metric (Harrell, 1996)

• Extension needed to take into account subsequent event occurrences (Kim, 2018)

The proposed C-index is based on event occurrence rate to tackle inter-individual
heterogeneity

Ĉrec =
∑n

i=1
∑n

j=1 1ri>rj × 1r̂i>r̂j∑n
i=1
∑n

j=1 1ri>rj
(3)

with ri = Ni(Ti)
Ti and r̂i = µ̂(Ti|xi)

Ti the observed and predicted event occurrence rates,
respectively.
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Performance evaluation - (b) Themean square error

• No MSE metric for recurrent events framework until very lately (Bouaziz, 2023)

• We adapted for an ensemble framework

For each tree b,

M̂SEb (t, µ̂b) =
1
n

n∑
i=1

(∫ t

0

dNi (u)
Ĝc (u|x)

− µ̂b (t|x)
)2

(4)

Where Ĝc (u|x) = 1 − Ĝ (u− |x) is an estimator of Gc (u|x) = 1 − G (u− |x) the conditional
cumulative distribution function of the censoring variable C given x.

Thus:

M̂SE
(
t, M̂

)
=

1
B

B∑
b=1

M̂SEb(t, µ̂b) (5)
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Performance evaluation - (c) The score

But

Two different models may lead to similar MSE values over time.

We introduce a score to represent the prediction gain compared to a reference estimator
and we define for each tree b

Scoreb
(
t, µ̂b, µ̂b,0

)
= M̂SEb

(
t, µ̂b,0

)
− M̂SEb (t, µ̂b) (6)

Thus:

Score
(
t, M̂

)
=

1
B

B∑
b=1

Scoreb
(
t, µ̂b, µ̂b,0

)
(7)
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Performance evaluation - Integrated counterparts

But

There is a need for the estimation of the expectation of single-time MSE and derived score
over time (e.g. hyperparameter tuning, generalized metric, etc.)

 ̂IMSE(τ1, τ2, M̂) = 1
τ2−τ1

∫ τ2
τ1
M̂SE(t, M̂)dt

IScore(τ1, τ2, M̂) = 1
τ2−τ1

∫ τ2
τ1
Score(t, M̂)dt

(8)

With τ1 = 0 and τ2 the maximum event time on the original sample.

15



Performance evaluation - Integrated counterparts

But

There is a need for the estimation of the expectation of single-time MSE and derived score
over time (e.g. hyperparameter tuning, generalized metric, etc.)

 ̂IMSE(τ1, τ2, M̂) = 1
τ2−τ1

∫ τ2
τ1
M̂SE(t, M̂)dt

IScore(τ1, τ2, M̂) = 1
τ2−τ1

∫ τ2
τ1
Score(t, M̂)dt

(8)

With τ1 = 0 and τ2 the maximum event time on the original sample.

15



Performance evaluation - Integrated counterparts

But

There is a need for the estimation of the expectation of single-time MSE and derived score
over time (e.g. hyperparameter tuning, generalized metric, etc.)

 ̂IMSE(τ1, τ2, M̂) = 1
τ2−τ1

∫ τ2
τ1
M̂SE(t, M̂)dt

IScore(τ1, τ2, M̂) = 1
τ2−τ1

∫ τ2
τ1
Score(t, M̂)dt

(8)

With τ1 = 0 and τ2 the maximum event time on the original sample.

15



Application



Empirical comparison

• Readmission dataset from R was used

• Multiple rehospitalizations after surgery in 403 patients diagnosed with colorectal
cancer, with 199 patients with no admission and a total of 106 deaths

• Available factors: sex (M/F), chemotherapy treatment (Yes/No), Dukes’ tumoral stage
(with levels A-B, C, and D), and time-dependent comorbidity Charlson’s index (with
levels 0, 1-2, and 3)

• Predictions from np estimator and Ghosh-Lin models were used for comparison
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Performancemetrics

Metric C-index ↑ IMSE ↓ IScore ↑
Np 0.58 (0.05) 7 883.50 (6 229.47) ref.
GL1 0.53 (0.08) 7 843.99 (6 106.36) 39.41 (230.6)
GL2 0.48 (0.08) 8 361.16 (6 292.29) -477.67 (348.48)
GL3 0.48 (0.07) 8 229.08 (6 478.35) -345.62 (432.6)
GL4 0.45 (0.05) 9 981.50 (6 064.23) -2 098.44 (541.59)

RecForest 0.80 (0.04) 706.02 (508.96) 188.22 (89.00)
GL* 0.60 (0.06) 7 934.28 (6 606.23) 51.33 (142.63)

Table 1: Means and standard deviations over the 10-fold cross-validation
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Variable importance

Figure 3: Variable importance of RecForest computed on the C-index and the opposite of the
integrated MSE. Charlson refers to Charlson comorbidity index, Dukes refers to tumoral Dukes
stage. 18



Predictions

Figure 4: Expected cumulative number of recurrent events with RecForest for two patients, one in
orange with the highest Charlson comorbidity score, and the other in blue with the lowest. Data
points outside the prediction curves are observed data. Triangle indicates the patient died.
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Discussion & Conclusion



Towrap-up

Take homemessages

• Our approach is simple and easily accessible;

• RecForest handles longitudinal factors, terminal events, high-dimensionality, and
missing data;

• Insight of interpretability with feature importance;

• Solid baseline for many extensions.

For these reasons, the approach we propose is a valuable contribution for analys-
ing recurrent events in medical research.
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Thank you for your attention!
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