Teaching & supervision

Teaching

Project tutoring

  • Interpretability for machine learning in survival framework, M1 ENSAE Paris (2024) [github]

  • Text mining and care pathways in heart failure patients, M1 ENSAE Paris (2023) [github]
    This work led to a presentation at Journées de Biostatistique 2023 in Toulouse, France

  • Modelling mortality amongst ICU patients, M1 ENSAI (2023)

  • Application of adaptive design approaches in phase III trials, M1 ENSAI (2023)

  • Simulating recurrent events in survival framework, M1 ENSAI (2022)

  • Learning algorithms to measure unbiased effect of statins on overall survival amongst Covid+ patients, M1 ENSAI (2022)

Internship supervision

  • Interim analyses and conditional power in adaptive clinical trial design, CIC1418 APHP HEGP – Maud M, Research internship, M1 ENSAI (2023)
    This work led to a presentation at Journées de Biostatistique 2023 in Toulouse, France

  • Impact of multicollinearity of covariates in clinical trials randomization, CIC1418 APHP HEGP – Hugo C, Research internship, M1 ENSAI (2023)
    This work led to a presentation at Journées de Biostatistique 2023 in Toulouse, France

  • Resuscitated cardiac arrest in ICU using MIMIC-IV data, CIC1418 APHP HEGP – Hélène S, Research internship, M1 ENSAI

  • Stakes and challenges of adaptive design in clinical trials, CIC1418 APHP HEGP – Emilie J, Research internship, M1 ENSAI (2022)
    This work led to a presentation at Journées de Biostatistique 2022 in Rennes, France

  • How to deal with correlation in variable selection, CIC1418 APHP HEGP – Ranujan K, Research internship, M1 ENSAI (2022)

  • Machine learning for survival endpoints, Institut de recherche mathématique de Rennes – Timothé R, Research internship, M1 Université de Rennes 1 (2021)
    This work led to a presentation at Journées de Statistique 2022 in Lyon, France

  • How to better consider treatment switch in randomized controlled trials? Amaris HEMA – Claire F, M2 internship, M2 ENSAI (2020)